Sains Malaysiana 54(8)(2025): 2033-2043

http://doi.org/10.17576/jsm-2025-5408-13

 

Probing the Electrochemical Properties of Exclusion Zone Water

(Menyelidiki Sifat Elektrokimia Zon Air Pengecualian)

 

CHUT-NGEOW YEE1, C H RAYMOND OOI1,*, LUCK-PHENG TAN3 & NYIAK-TAO TANG2

 

1Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

2Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

3Prime Oleochemicals Industries Sdn. Bhd., Lot 976 (2504), Batu 28, Simpang Tiga, Pekan Ijok, 45600 Kuala Selangor, Selangor, Malaysia

 

Received: 13 February 2025/Accepted: 2 July 2025

 

Abstract

The presence of solute-free zones, called the exclusion zones (EZ) near water interfaces, is a phenomenon that has been extensively studied. While the EZ is shown to be negatively charged, it is balanced by an adjacent region that is rich in positive ions. This paper investigates this twin characteristic of EZ on electrical conductivity. We show that EZ has a strong inhibitory effect on electrical flow, especially the negative current, providing additional evidence to its structural integrity and rigidity. More interesting is the positive ion-rich region adjoining the EZ, we show this region is a highly conductive surface that facilitates the flow of negative current.

Keywords: Electrochemistry; exclusion zone; water conductivity

 

Abstrak

Kehadiran zon bebas bahan terlarut, dipanggil zon pengecualian (EZ) berhampiran air antara muka, merupakan fenomena yang telah dikaji secara meluas. Walaupun EZ ditunjukkan bercas negatif, ia diimbangi oleh kawasan bersebelahan yang kaya dengan ion positif. Kertas ini mengkaji ciri kembar EZ ini pada kekonduksian elektrik. Kami menunjukkan bahawa EZ mempunyai kesan perencatan yang kuat pada aliran elektrik, terutamanya arus negatif, memberikan bukti tambahan kepada integriti dan ketegaran strukturnya. Lebih menarik ialah kawasan yang kaya dengan ion positif yang bersebelahan dengan EZ, kami menunjukkan rantau ini adalah permukaan yang sangat konduktif yang memudahkan pengaliran arus negatif.

Kata kunci: Elektrokimia; kekonduksian air; zon pengecualian

 

REFERENCES

Bunkin, N.F., Ignatiev, P.S., Kozlov, V.A., Shkirin, A.V., Zakharov, S.D. & Zinchenko, A.A. 2013. Study of the phase states of water close to Nafion interface. Water Journal 4: 129-154.

Chai, B., Mahtani, A.G. & Pollack, G.H. 2012. Unexpected presence of solutes-free zone at metal-water interfaces. Contemp. Mater. 3(1): 1-12.

Chai, B., Yoo, H. & Pollack, G.H. 2009. Effect of radiant energy on near-surface water. J. Phys. Chem. 113(42): 13953-13958.

Chen, C.S., Chung, W.J., Hsu, I.C., Wu, C.M. & Chin, W.C. 2012. Force field measurements within the exclusion zone of water. J. Biol. Phys. 38(1): 113-120.

De Ninno, A. 2017. Dynamics of formation of the Exclusion Zone near hydrophilic surfaces. Chem. Phys. Lett. 667: 322-326.

Elton, D.C., Spencer, P.D., Riches, J.D. & Williams, E.D. 2020. Exclusion zone phenomena in water - A critical review of experimental findings and theorie. International Journal of Molecular Sciences 21(14): 5041.

Kundacina, N., Shi, M. & Pollack, G.H. 2016. Effect of local and general anesthetics on interfacial water. PLoS ONE 11(4): e0152127.

Litman, Y., Chiang, K-Y., Seki, T., Nagata, Y. & Bonn, M. 2024. Surface stratification determines the interfacial water structure of simple electrolyte solutions. Nat. Chem. 16(4): 644-650.

Ovchinnikova, K. & Pollack, G.H. 2009. Can water store charge? Langmuir 25(1): 542-547.

Shen, Y., Theodorou, A., Li, Z. & Pollack, G.H. 2024. Ultraviolet (UV) light effect on the electrical potential of interfacial water. Colloids and Surfaces A: Physicochemical and Engineering Aspects 691: 133816.

Wang, A. & Pollack, G.H. 2021. Effect of infrared radiation on interfacial water at hydrophilic surfaces. Colloid and Interface Science Communications 42: 100397.

Yee, C-N., Raymond Ooi, C.H., Tan, L-P., Misran, M. & Tang, N-T. 2019. Large-scale structure formation in ionic solution and its role in electrolysis and conductivity. PLoS ONE 14(3): e0213697.

Yoo, H., Paranji, R. & Pollack, G.H. 2011. Impact of hydrophilic surfaces on interfacial water dynamics probed with NMR spectroscopy. J. Phys. Chem. 2(6): 532-536.

Zhao, Q., Coult, J. & Pollack, G.H. 2010. Long-range attraction in aqueous colloidal suspensions. Proc SPIE Int. Soc. Opt. Eng. 7376:73761C1-73761C13.

Zheng, J-M. & Pollack, G.H. 2006. Solute exclusion and potential distribution near hydrophilic surfaces. In Water and the Cell, edited by Pollack, G.H., Cameron, I.L. & Wheatley, D.N. Springer, Dordrecht. pp. 165-174.

Zheng, J-M. & Pollack, G.H. 2003. Long-range forces extending from polymer-gel surfaces. Physical Review E 68(3): 031408.

Zheng, J-M., Wexler, A. & Pollack, G.H. 2009. Effect of buffers on aqueous solute-exclusion zones around ion-exchange resins. Journal of Colloid and Interface Science 332(2): 511-514.

Zheng, J-M., Chin, W-C., Khijniak, E., Khijniak Jr., E. & Pollack, G.H. 2006. Surfaces and interfacial water: Evidence that hydrophilic surfaces have long-range impact. Adv. Colloid Interface Sci. 127(Issue 1): 19-27.

 

*Corresponding author; email: rooi@um.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next